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Infinitely fast diffusion in single-file systems
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We have used dynamic Monte Carlo~DMC! methods and analytical techniques to analyze single-file systems
for which diffusion is infinitely fast. We have simplified the master equation removing the fast reactions, and
we have introduced a DMC algorithm for infinitely fast diffusion. The DMC method for fast diffusion give
similar results as the standard DMC with high diffusion rates. We have investigated the influence of charac-
teristic parameters, such as pipe length, adsorption, desorption, and conversion rate constants on the steady-
state properties of single-file systems with a reaction, looking at cases when all the sites are reactive and when
only some of them are reactive. We find that the effect of fast diffusion on single-file properties of the system
is absent even when diffusion is infinitely fast. Diffusion is not important in these systems. Smaller systems are
less reactive and the occupancy profiles for infinitely long systems show an exponential behavior.
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I. INTRODUCTION

In one-dimensional systems such as zeolites or other
rous structures, diffusion is a very important process. T
pores of these structures that have the cross section s
what larger than a diffusing molecule, are modeled bysingle-
file systems. In these systems particles move in a concer
fashion, as they are unable to cross each other. This pro
of single-file diffusion has different characteristics from o
dinary diffusion which affects the nature of both transp
and conversion by chemical reactions. In Refs.@1# and @2#
we have studied the steady-state and transient propertie
this system. We have analyzed different situations for dif
sion rates, and we have compared the results obtained
simulation and analytical techniques. Often diffusion is
very fast process compared to the other reactions in the
tem. We are thus interested to be able to model correctly
infinitely fast diffusion. For this purpose, we used dynam
Monte Carlo~DMC! methods@14,16–19# with high regular
diffusion rates, assuming that these rates are high enoug
model infinitely fast diffusion.

Important work has been done in the area of single-
systems@3–53# and an overview containing comparisons b
tween different results in the field is given in Ref.@1#. In this
paper we concentrate on the important properties of infini
fast diffusion in a single-file system including conversion

Dynamic Monte Carlo methods for very high rates are
very efficient and the progress of the simulation is slo
Moreover, considering regular reaction rates it is alway
problem of making a balance between the diffusion ra
high enough so that the infinitely fast diffusion effects a
correctly modeled and the performance of the simulation.
derive here a different method to simulate infinitely fast d
fusion in single-file systems, starting from the master eq
tion.

The rate equations of some special limiting cases and
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analytical description for the productivity of the system a
also derived. We study also how the system behav
changes for different sets of kinetic parameters and differ
distributions of the reactive sites. We categorize also in
esting results obtained for profile occupancies for differ
reactive system and different distribution of the react
sites.

In Sec. II we specify our mathematical model with th
theoretical background for the analytical and simulation
sults. We introduce the master equation of the system
Sec. II B and then we simplify the master equation remov
the fast reactions in Sec. II C. In Secs. II D 1 and II D 2 w
present the simulation methods and we present a DMC a
rithm for infinitely fast diffusion. Different analytical result
are presented in Sec. III. In Secs. IV A and IV B we analy
different simulation results for the case when all the sites
reactive and when only some of the sites are reactive.
pay special attention to the influence of the length of the p
and reaction rate constant on the site occupancy of the
tem.

II. THEORY

In this section we will give the theoretical background f
our analytical and simulation results. First we will speci
our model and we will derive a finite set of exact rate equ
tions starting from the master equation@54#. These rate equa
tions are used in order to derive expressions for the prod
tivity in the system for special cases. We show that we c
simplify the master equation describing the evolution of t
system over time removing fast reactions. We use a dyna
Monte Carlo method for our simulation results and we g
the description of a dynamic Monte Carlo-like algorithm f
infinitely fast diffusion.

A. The model

We model a single-file system by a one-dimensional ar
~Fig. 1! of sites, each possibly occupied by an adsorba
©2003 The American Physical Society07-1
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FIG. 1. Picture of a single-file
system with two types of adsorbe
particles
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This is a model for diffusion and reaction in a on
dimensional arrangement of particles with hard-core inter
tion. The sites are numbered 1,2, . . . ,S. A particle can only
move to the right or to the left if an adjacent site is vaca
The sites could be reactive and unreactive and we note
Nprot the number of reactive sites. A reactive site is the o
place where a conversion may take place.

We consider two types of adsorbates,A and B, in our
model and we denote withY the site occupation of a site
Y5(*, A,B), which stands for an vacant site, a site occup
by A, or a site occupied byB, respectively. We restrict our
selves to the following monomolecular and bimolecular tra
sitions.

(a) Adsorption and desorption. Adsorption and desorption
take place only at the two marginal sites, i.e., the left a
rightmost sites at the ends of the system,

A~gas!1* m→Am ,

Am→A~gas!1* m ,

Bm→B~gas!1* m ,

where subscriptsm denotes a marginal site. Note that there
no B adsorption.Bs can only be formed by a conversion.

(b) Diffusion. In the pipe, particles are allowed to diffus
via hopping to vacant nearest neighbor sites

An1* n11↔* n1An11 ,

Bn1* n11↔* n1Bn11 ,

where the subscripts are site indices:n51,2, . . . ,S21.
(c) Conversion. An A can transform into aB at a reactive

site

Ar→Br .

In the initial state of the system all sites are vacant~no
particles in the pipe!, since we are interested in the behav
of the system towards equilibrium.

B. Master equation

Reaction kinetics is described by a stochastic process.
ery reaction has a microscopic rate constant associated
it that is the probability per unit time that the reaction occu
Stochastic models of physical systems can be described
master equation@54#.

By a,b, we will indicate a particular configuration of th
system, i.e., a particular way to distribute adsorbates ove
the sites.Pa(t) will indicate the probability of finding the
04670
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system in configurationa at time t andWab is the rate con-
stant of the reaction changing configurationb to configura-
tion a.

The probability of the system being in configurationa at
time t1dt can be expressed as the sum of two terms. T
first term is the probability to find the system already
configurationa at timet multiplied by the probability to stay
in this configuration duringdt. The second term is the prob
ability to find the system in some other configurationb at
time t multiplied by the probability to go fromb to a during
dt,

Pa~ t1dt!5S 12dt(
b

WbaD Pa~ t !1dt(
b

WabPb~ t !.

~1!

By taking the limitdt→0 this equation reduces to a ma
ter equation

dPa~ t !

dt
5(

b
@WabPb~ t !2WbaPa~ t !#. ~2!

Analytical results can be derived as follows. The value
a propertyX is a weighted average over the valuesXa ,
which is the value ofX in configurationa,

^X&5(
a

PaXa . ~3!

From this follows the rate equation,

d^X&
dt

5(
a

dPa

dt
Xa5(

ab
@WabPb2WbaPa#Xa

5(
ab

WabPb~Xa2Xb!. ~4!

C. Master equation for infinitely fast diffusion

We show that we can simplify the master equation rem
ing the fast reactions. In order to remove fast reactions,
stop distinguishing between configurations that can be tra
formed into each other by the fast reactions. We split
configurations into disjoint sets such that ifCi is one such a
set anda,bPCi , thena can be transformed intob, or vice
versa by fast reactions. If we denote

p i5 (
aPCi

Pa ,

we can derive the master equation forp i ,
7-2
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dp i

dt
5 (

aPCi

dPa

dt
5 (

aPCi
(
b

@WabPb2WbaPa#

5 (
aPCi

(
j

(
bPCj

@WabPb2WbaPa#

5(
j

S (
aPCi

(
bPCj

Wab

Pb

p j
Dp j

2(
j

S (
bPCj

(
aPCi

Wba

Pa

p i
Dp i5(

j
@v i j p j2v j i p i #

~5!

with v i j 5(aPCi
(bPCj

WabPb /p j .
We see that all fast reactions have disappeared; they

contribute tov i i , which can be left out of the ME~master
equation!. In order to calculatev i j , we need the conditiona
probabilitiesPb /p j . Because we have fast reactions co
necting thebs in Cj we may assume that thesebs are in
steady state with respect to each other. Hence, the co
tional probabilityPb /p j is nothing but the probability ofb
in steady-state if we restrict ourselves to the configuration
Cj .

D. Simulation methods

1. Dynamic Monte Carlo

DMC methods allow us to simulate the system govern
by the master equation over time. We simplify the notation
the master equation by defining a matrixW containing the
rate constantsWab , and a diagonal matrixR by Rab
[(gWgb , if a5b, and 0 otherwise. If we put the probabil
ties of the configurationsPa in a vectorP, we can write the
master equation as

dP

dt
52~R2W!P, ~6!

whereR and W are time independent. We also introduce
new matrixQ, Q(t)[exp@2Rt#.

This matrix is time dependent by definition, and we c
rewrite the master equation in the integral form

P~ t !5Q~ t !P~0!1E
0

t

dt8Q~ t2t8!WP~ t8!. ~7!

By substitution we get from the right-hand side forP(t8),

P~ t !5FQ~ t !1E
0

t

dt8Q~ t2t8!WQ~ t8!1E
0

t

dt8E
0

t8
dt9

3Q~ t2t8!WQ~ t82t9!WQ~ t9!1•••GP~0!. ~8!

Suppose att50 the system is in configurationa with
probability Pa(0). Theprobability that, at timet, the system
is still in configuration a is given by Qaa(t)Pa(0)
5exp(2Raat)Pa(0). This shows that the first term represen
04670
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the contribution to the probabilities when no reaction tak
place up to timet. The matrixW determines how the prob
abilities change when a reaction takes place. The sec
term represents the contribution to the probabilities when
reaction takes place between times 0 andt8, some reaction
takes place at timet8, and then no reaction takes place b
tweent8 andt. The subsequent terms represent contributio
when two, three, four, etc., reactions take place. The ide
the DMC method is not to compute probabilitiesPa(t) ex-
plicitly, but to start with some particular configuration, re
resentative for the initial state of the experiment one want
simulate, and then generate a sequence of other config
tions with the correct probability. The method generate
time t8 when the first reaction occurs according to the pro
ability distribution 12exp@2Raat#. At time t8 a reaction
takes place such that a new configurationa8 is generated by
picking it out of all possible new configurationsb with a
probability proportional toWa8a . At this point we can pro-
ceed by repeating the previous steps, drawing again a
for a new reaction and a new configuration@55,56#. One of
the most popular DMC method in the literature is rando
selection method~RSM! @55#. We use this method to simulat
the master equation of our system.

2. A dynamic Monte Carlo algorithm for infinitely fast diffusion

In Sec. C we have derived the ME distinguishing betwe
configurations that can be transformed into each other by
reactions. Starting from ME~5! we give a DMC algorithm for
simulating infinitely fast diffusion. For our model, diffusio
is much faster than adsorption and desorption, so the set
all configurations that are connected by diffusion. These s
can be labeled only by the sequences of particlesA andB, as
only the number ofA andB particles and their order in the
pipe is important to distinguish the configurations within
set. Moreover, all probabilities of configurations within a s
are the same. This means thatp j /Pb is the number of con-
figurations inCj . There are (n

S) ways to distributen particles
over S sites. We have then

Pb

pn
5S S

nD 21

with PbPCn . The summation(bPCn
sums over (n

S) con-
figurations. However, for adsorption the left-most or t
right-most site should be vacant. This gives us (n

S21) pos-
sible configurations. Each of these configurations gives
one configuration in the summation overa. So we get

vads52Wads

S S21

n D
S S

nD 52Wads

S2n

S
52Wads~12u!,

~9!

where vads is the transition probability for the transitio
from a configuration within the set withn particles to a con-
figuration within the set withn11 particles. Similarly, we
find that
7-3
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vdes52Wdes

S S21

n21D
S S

nD 5
2Wdesn

S
52Wdesu. ~10!

In both expressionsu5n/S is the coverage.
The dynamic Monte Carlo~DMC! algorithm that we have

used to simulate the system consists of the following ste
~1! Compute the time for the next adsorption or deso

tion. If the current time ist then the time for that process
t1Dt with

Dt52
ln r

2~12u!Wads12uWdes
, ~11!

wherer is a random number picked from the uniform dist
bution on the interval̂ 0,1# andu is the probability that the
marginal site is occupied. With infinitely fast diffusion th
probability is given byu5(NA1NB)/S with NA andNB the
number ofA’s andB’s respectively in the system.

~2! Compute for eachA in the system a time when it wil
transform into aB. This time is given byt1t with

t52
ln r

PWrx
. ~12!

In this expressionP stands for the probability that theA is at
a protonic site. If we number the particles in the system fr
left to right 1,2, . . . ,NA1NB , and the sites also from left to
right 1,2, . . . ,S then the probability that particle numbern is
at site numbers,Pn

s , is given by

Pn
s5

S s21

n21D S S2s

NA1NB2nD
S S

NA1NB
D . ~13!

P for particle n is then the sum of this expression over
protonic sites

P5(
s51

S

Pn
sds , ~14!

whereds51 if site s is protonic.
~3! Change thoseAs with t,Dt into Bs.
~4! Determine the next process at the marginal sites. I

an adsorption with probability proportional to (12u)Wads
and a desorption with probability proportional touWdes. The
process is equally likely to occur on the left- or the righ
hand side.

~5! Change the number of particles in the system acco
ing to the next process at the marginal sites.

~6! Update the time.
~7! Repeat steps 1–6.
A validation of this method can be found in Ref.@57#.
04670
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III. ANALYTICAL RESULTS

In this section, for some special cases such as low load
limit and fast and slow reactions, we are able to derive so
expressions for the productivity in the steady state. For
case of low loading limit we can also derive the rate eq
tions of the system.

A. The low loading limit.

In this case we can assume that there is never more
one particle in the system. The following rate equations th
hold:

d^A&
dt

5
2Wads

S
^* &2

2Wdes

S
^A&2

NprotWrx

S
^A&,

d^B&
dt

52
2Wdes

S
^B&1

NprotWrx

S
^A&, ~15!

whereNprot is the number of reactive sites in the system.
the rate equations forA, the contributions to the probability
to have anA in the system is given by the adsorption to
open end, while the loss to this probability is given by t
desorption to an open end and also by the conversion.
probability to have an adsorption of a particleA into the
system equals the adsorption rate constantWads times the
probability to have a site vacant (^* &) times the probability
to be at one of the marginal sites (2/S). The probability to
have a desorption of anA equals the desorption rate consta
Wdes times the probability to have anA in the system̂ A&
times the probability to be at one of the marginal sites (2/S).
The last term stands for the probability of a reaction ofA into
a B and this equals the probability to have anA in the system
(^A&) times the reaction rate constantWrx times the probabil-
ity to be at one reactive site (Nprot/S). In the same way we
derive the rate equations forB.

Here ^X& is the probability that there is anX at an arbi-
trary site. For steady state we get

^A&5
2WadsWdes

~Wads1Wdes!~2Wdes1NprotWrx!
,

^B&5
NprotWadsWrx

~Wads1Wdes!~2Wdes1NprotWrx!
. ~16!

From this equation we immediately get the turnover f
quency defined as the rate ofB desorption per reactive site

vTOF5
2Wdeŝ B&

Nprot
5

2Wdes~12^A&!

Nprot
. ~17!

If we replace the steady-state expressions forA andB in this
equation we get

vTOF5
2WadsWdesWrx

~Wads1Wdes!~2Wdes1NprotWrx!
. ~18!

We see that in this limit the turnover frequency does n
depend on the system size.
7-4
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Comparing the number ofBs produced from the analyti
cal results with the DMC results for the case whenWads
50.0033, Wdes50.9967, Wrx50.1, and different distribu-
tions of the reactive sites, we remark that we get sim
results.

B. Fast and slowA\B reaction

If the reaction is fast, and there are not too many partic
in the system, then all particles in the system areBs. This
means

^B&5
Wads

Wads1Wdes
~19!

and

vTOF5
1

Nprot

2WadsWdes

Wads1Wdes
. ~20!

The restriction of not too many particles is necessary,
cause all particles should always be able to reach a prot
site. This means that

Wads

Wads1Wdes
!

Ninert

S
~21!

must hold, whereNinert is the distance between the margin
site and the first protonic site. This relation depends on
distribution of the reactive sites. When reaction is fast t
means that it depends on the distance from the margins to
first protonic site,Ninert.

Comparing the site occupancy withBs~19! with results
from the DMC simulations, we find that for the reaction ra
constantsWads50.033 33,Wdes50.966 67,Wrx510 and all
the sites reactive, the results are similar.

If the reaction is slow, then there are only occasionallyBs
in the system. This means that

^A&5
Wads

Wads1Wdes
. ~22!

All particles in the system will be renewed between tw
subsequent formations of aB. Therefore

vTOF5
WadsWrx

Wads1Wdes
. ~23!

Comparing the site occupancy withAs~22! with results
from the DMC simulations, we find that for the reaction ra
constantsWads50.033 33,Wdes50.966 67,Wrx50.001 and
all the sites reactive, the results are similar.

IV. SIMULATION RESULTS AND DISCUSSION

A. All sites reactive

We remark that DMC methods with regular high rates
diffusion tend to give similar results as DMC method f
infinitely fast diffusion described in Sec. II D 2. The resu
of these comparisons are in Fig. 2. We conclude that
04670
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infinitely fast diffusion the DMC method we have defined
a correct method to simulate the behavior of the system
the limit Wdiff→`.

In Ref. @1# we have seen that for the case when all t
sites are reactive, the site occupancies of the system obta
from DMC simulations show that the system is not homog
neous even for very fast diffusion rates. We find the sa
effect also using DMC for infinitely fast diffusion, for differ
ent loadings and for different reaction rate constants.

We study also the dependence of the occupancy pro
on the reaction rate constant at different loadings of the s
tem.

The simulation results in Fig. 3 show how the shape of
profiles changes with reaction rateWrx for high and low
loading of the pipe, when all the sites are reactive. We fi
that for high loadings, as an effect of the blocking, t
middle sites have the same probability to be occupied
both fast and slow reactive systems. Only the occupanc
marginal sites is influenced by the reactivity, such that in f
reactive systems we have a higher probability to haveB

FIG. 2. Profile occupancies for a system of lengthS530, Wads

50.6, Wdes50.4, andWrx50.1. The continous lines are the profi
occupancies forA ~the lower! and B ~the higher! using DMC for
infinitely fast diffusion. The dotted lines are the profile occupanc
for A~the lower! andB ~the higher! using DMC with a regular high
rate for diffusion (Wdiff51600).

FIG. 3. ~a! Dynamic Monte Carlo results for site occupancy f
the case of infinitely fast diffusion and low loading (Wads50.2,
Wdes50.8) of a system of lengthS530. The continuous line is for
the site occupancy forWrx50.1, the first dotted line near the con
tinous line is forWrx50.2, and the second is forWrx50.4. ~b!
Dynamic Monte Carlo results for site occupancy for the case
infinitely fast diffusion and high loading (Wads50.8, Wdes50.2) of
a system of lengthS530. The continuous line is for the site occu
pancy forWrx50.1, the first dotted line near the continous line
for Wrx50.2, and the second is forWrx50.4. In~a! and~b! the lines
at high occupancies correspond to^Bn& and at low occupancies
correspond tôAn&.
7-5
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NEDEA et al. PHYSICAL REVIEW E 67, 046707 ~2003!
near the marginal sites, and, in consequence, a better pro
tivity. For slow reactive systems, the occupancy profiles
scaled with reaction rate constant. We notice that the prod
tivity is growing, increasing the reaction rate in case of lo
loading systems almost as fast as in the case of the
loading systems because of the diminished effect of
blocking in the pipe. Comparing, for instance, the rate
growth for B production when reaction rate constant is
creasing from Wrx50.1 to Wrx50.4 (Bprod

Wrx50.4

2Bprod
Wrx50.1)/S, in case of low loading (u50.2) and high

loading (u50.8), we find almost the same rate of growth
both the cases, and that is 0.5.

In Fig. 4 we have the logarithmic shape of the occupan
profiles for A and B. These profiles show that smaller sy
tems are less reactive as lessAs are inside the pipe. Thi
explains the faster decrease of^An& for small systems in Fig.
4. For infinitely long systems we expect to have straight lin
corresponding to an exponential decrease of^An&.

B. Only some of the sites reactive

For all the sites reactive, in paper@1#, we have shown tha
even whenWdi f f→`, DMC results with regular high diffu-

FIG. 4. The logarithm of the DMC~random selection method!
profile occupancies (^An&) for Wads50.6, Wdes50.4, Wrx50.1, and
when all the sites are reactive, for various system sizesS.
04670
uc-
e
c-

gh
e
f

y

s

sion rates indicate that the system does not become hom
neous. Using DMC for infinitely fast diffusion we find tha
also for different distribution of the reactive sites we find
nonhomogeneous distribution of the particles in the syst
In Fig. 5 we can see that for marginal sites reactive and
middle sites reactive as well, we have single-file effects a
for infinitely-fast diffusion for different rates of reactions.

We notice that the profiles in case of high loadings a
very slowly dependent on conversion, both for middle a
for marginal sites reactive. Comparing with simulation r
sults for occupancy profiles in Ref.@1#, where middle sites
and marginal sites are reactive, and for regular diffusion r
constants in the domain (2. . . 10), we notice that the pro
files are similar. We can conclude that since the effect
infinitely fast diffusion is absent for single-file systems, t
diffusion is not so important in these systems.

For low loading, when marginal sites are reactive, t
occupancy profiles are scaled withWrx . We notice that con-
version in Fig. 5 is the rate determining step. In this case,
middle sites does not have the same occupancy for diffe
reaction rate constants like in the case of all the sites re
tive, but are strongly dependent onWrx .

We notice also that the productivity in case marginal si
are reactive is growing faster, increasing the reaction r
constants at low loadings than at high loadings. Compar
for instance, the rate of growth forB productionBprod when
reaction rate constant is increasing fromWrx50.1 to Wrx
50.4, in case of low loading (u50.2) and high loading (u
50.8), we find that the rate of growth ofB productivity at
low loadings (0.3) is larger than at high loadings (0.25).

When we have middle sites reactive we have higher pr
ability to find As near marginal sites. The productivity
smaller than in all other cases. The profiles are again sc
with Wrx for low loadings. For high loadings and middl
sites reactive, the profiles for different conversion rates
almost similar, so the productivity can only be increased
this case by increasing the number of reactive sites.
ase

reactive.
FIG. 5. Dynamic Monte Carlo results for site occupancy for the case of infinitely fast diffusion. The first two~a! and~b! are for the case
of 5 marginal sites reactive at each end and the last two~c! and ~d! for the case of 10 middle sites reactive. The first figure is for the c
of low loading (Wads50.2, Wdes50.8), and the second is for high loading (Wads50.8, Wdes50.2) at different reaction rates (Wrx50.1,0.2,
0.4!. The third and the fourth figures are for the same parameters as the first and the second, but for the case of 10 middle sites
7-6
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V. SUMMARY

We have used DMC methods and analytical technique
analyze single-file systems for which diffusion is infinite
fast. We simplified the ME removing fast diffusion, and w
have presented a DMC algorithm for infinitely fast diffusio
that simulate this ME. We show that DMC with regular hig
rates gives the same results as DMC with infinitely fast d
fusion. The fundamental assumption considered for infinit
fast diffusion in the analytical results is that all configur
tions related by diffusion have the same probability.

In the limiting cases such as low loading limit and slo
and fast conversions, we are able to derive expressions
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to

-
y

for

theB productivity. We notice that the number ofBs produced
per unit time in these cases do not depend on the system
Comparisons between analytical and DMC results rev
similar results for the productivity.

DMC results show that when all the sites are reactive a
when only some of the sites are reactive, diffusion has
influence on the single-file properties of the system. Diff
ent results for the dependencies of the occupancy pro
and productivity on the reaction rate constant and differ
distributions are categorized. The occupancy profiles sh
that smaller systems are less reactive since lessAs are inside
the pipe.
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